Apprentissage statistique : modélisation décisionnelle et apprentissage profond
Code UE : RCP209
- Cours
- 6 crédits
- Volume horaire de référence
(+ ou - 10%) : 50 heures
Responsable(s)
Public, conditions d’accès et prérequis
Cet enseignement s'adresse aux auditeurs et auditrices souhaitant se former à l'apprentissage statistique, notamment à l'apprentissage profond et aux réseaux de neurones artificiels.
Prérequis :
Prérequis :
- avoir un niveau équivalent licence en mathématiques (algèbre linéaire, probabilités, statistiques, analyse) et en informatique (savoir programmer),
- Avoir suivi la première partie du cycle spécialisation de l'EICNAM ou avoir le niveau M1 (Bac + 4) est suffisant.
- Le langage de programmation utilisé durant le cours est Python.
- Il est recommandé d'avoir suivi au préalable l'UE RCP208 « Apprentissage statistique : modélisation descriptive et introduction aux réseaux de neurones » ou un enseignement équivalent comportant une présentation des méthodes de base d'analyse des données et de modélisation descriptive des données.
L'avis des auditeurs
Les dernières réponses à l'enquête d'appréciation pour cet enseignement :
Présence et réussite aux examens
Pour l'année universitaire 2022-2023 :
- Nombre d'inscrits : 119
- Taux de présence à l'évaluation : 47%
- Taux de réussite parmi les présents : 61%
Objectifs pédagogiques
Ce cours présente les méthodes modernes d'intelligence artificielle pour la modélisation décisionnelle à partir des données, notamment les machines à vecteurs supports (SVM), les forêts aléatoires et les réseaux de neurones profonds, en vue de leur utilisation dans des applications réelles.
L'apprentissage automatique ou (machine learning) permet de construire des modèles prédictifs à partir de jeux de données empiriques, par exemple pour la prise de décision. Les méthodes abordées font partie de l'intelligence artificielle et de la fouille de données et ont de très nombreuses applications dans des domaines aussi divers que l'assurance qualité, le diagnostic médical, les véhicules autonomes, la bio-ingénierie, la climatologie, la sécurité environnementale, le marketing, la gestion de la relation client, la recherche d'information, etc.
L'apprentissage automatique ou (machine learning) permet de construire des modèles prédictifs à partir de jeux de données empiriques, par exemple pour la prise de décision. Les méthodes abordées font partie de l'intelligence artificielle et de la fouille de données et ont de très nombreuses applications dans des domaines aussi divers que l'assurance qualité, le diagnostic médical, les véhicules autonomes, la bio-ingénierie, la climatologie, la sécurité environnementale, le marketing, la gestion de la relation client, la recherche d'information, etc.
Contenu
Les thèmes abordés dans les séances de cours et de travaux pratiques (TP) sont :
- Bases de l'apprentissage supervisé : qu'est-ce qu'un modèle décisionnel ?
- Évaluation et sélection de modèles.
- Arbres de décision et forêts d'arbres de décision (random forest).
- Machines à vecteurs de support (SVM) :
- discrimination, régression,
- estimation du support d'une distribution, ingénierie des noyaux.
- Réseaux de neurones artificiels :
- apprentissage de représentations
- apprentissage profond (deep learning)
- réseaux convolutifs
- réseaux récurrents
Modalité d'évaluation
L'UE est évaluée sur un projet personnel et un examen écrit. La note finale est la moyenne entre la note obtenue au projet et la note obtenue à l'examen.
Bibliographie
- Chloé-Agathe Azencott : Introduction au machine learning
- Aurélien Géron : Machine learning avec Scikit-Learn
- Aurélien Géron : Deep learning avec Keras
- Aaron Courville, Ian Goodfellow, Yoshua Bengio : L'apprentissage profond
Cette UE apparaît dans les diplômes et certificats suivants
Rechercher une formation
RECHERCHE MULTI-CRITERES
Plus de critères de recherche sont proposés:
-
Vous pouvez sélectionner des formations grâce à un mot ou à une expression (chaîne de caractères) présent dans l’intitulé de la formation, sa description ou ses index (discipline ou métier).
Des mots-clés sont suggérés à partir du 3e caractère saisi, mais vous pouvez aussi rechercher librement. - Les différents items sélectionnés sont croisés.
ex: "Comptabilité" et "Diplôme" - Les résultats comprennent des formations du Cnam Liban (UE, diplômes, certificats, stages) et des formations proposées à distance par d'autres centres du Cnam.
- Les codes des formations du Liban se terminent par le suffixe LIB.
- Dans tous les cas, veillez à ne pas insérer d'espace ni de ponctuation supplémentaire.
Plus de critères de recherche sont proposés:
- Type de diplôme
- Niveau d'entrée
- Modalité de l'enseignement
- Programmation semestrielle
Chargement du résultat...
Contact
EPN05 - Informatique
2 rue Conté
75003 Paris
Tel :01 40 27 22 58
Swathi RANGANADIN RAJASELVAM
2 rue Conté
75003 Paris
Tel :01 40 27 22 58
Swathi RANGANADIN RAJASELVAM
Voir le site
Voir le calendrier, le tarif, les conditions d'accessibilité et les modalités d'inscription dans le(s) centre(s) d'enseignement qui propose(nt) cette formation.
UE
-
-
Paris
-
Paris
- 2024-2025 1er semestre : Formation ouverte et à distance (FOAD)
- 2026-2027 1er semestre : Formation ouverte et à distance (FOAD)
Comment est organisée cette formation ?2024-2025 1er semestre : Formation ouverte et à distance
Dates importantes
- Période des séances du 16/09/2024 au 18/01/2025
- Période d'inscription : du 10/06/2024 à 10:00 au 18/10/2024 à 23:59
- Date de 1ère session d'examen : la date sera publiée sur le site du centre ou l'ENF
- Date de 2ème session d'examen : la date sera publiée sur le site du centre ou l'ENF
Précision sur la modalité pédagogique
- Une formation ouverte et à distance (FOAD) est une formation dispensée 100% à distance, qui peut être suivie librement, à son rythme.
- Regroupements physiques facultatifs : Aucun
Organisation du déploiement de l'unité
- Délai maximum de réponse à une solicitation : sous 96 heures (Jours ouvrés)
Modes d'animation de la formation
- Forum
- Organisation d'une séance de démarrage
- Evaluation de la satisfaction
- Hot line technique
Ressources mises à disposition sur l'Espace Numérique de Formation
- Documents de cours
- Enregistrement de cours
- Documents d'exercices, études de cas ou autres activités pédagogiques
- Bibliographie et Webographie
Modalité de contrôle de l'acquisition des compétences et des connaissances (validation de l'UE)
- Examens présentiels dans un centre habilité
- Examens en ligne
- Projet(s) individuel(s)
- Projet(s) collectif(s)
2024-2025 2nd semestre : Formation en présentiel soir ou samedi
Dates importantes
- Période des séances du 03/02/2025 au 07/06/2025
- Période d'inscription : du 10/06/2024 à 10:00 au 14/03/2025 à 17:00
- Date de 1ère session d'examen : la date sera publiée sur le site du centre ou l'ENF
- Date de 2ème session d'examen : la date sera publiée sur le site du centre ou l'ENF
Précision sur la modalité pédagogique
- Une formation en présentiel est dispensée dans un lieu identifié (salle, amphi ...) selon un planning défini (date et horaire).
-
Centre Cnam Paris
- 2024-2025 2nd semestre : Formation en présentiel soir ou samedi
- 2025-2026 2nd semestre : Formation en présentiel soir ou samedi
- 2026-2027 2nd semestre : Formation en présentiel soir ou samedi
Comment est organisée cette formation ?2024-2025 1er semestre : Formation ouverte et à distance
Dates importantes
- Période des séances du 16/09/2024 au 18/01/2025
- Période d'inscription : du 10/06/2024 à 10:00 au 18/10/2024 à 23:59
- Date de 1ère session d'examen : la date sera publiée sur le site du centre ou l'ENF
- Date de 2ème session d'examen : la date sera publiée sur le site du centre ou l'ENF
Précision sur la modalité pédagogique
- Une formation ouverte et à distance (FOAD) est une formation dispensée 100% à distance, qui peut être suivie librement, à son rythme.
- Regroupements physiques facultatifs : Aucun
Organisation du déploiement de l'unité
- Délai maximum de réponse à une solicitation : sous 96 heures (Jours ouvrés)
Modes d'animation de la formation
- Forum
- Organisation d'une séance de démarrage
- Evaluation de la satisfaction
- Hot line technique
Ressources mises à disposition sur l'Espace Numérique de Formation
- Documents de cours
- Enregistrement de cours
- Documents d'exercices, études de cas ou autres activités pédagogiques
- Bibliographie et Webographie
Modalité de contrôle de l'acquisition des compétences et des connaissances (validation de l'UE)
- Examens présentiels dans un centre habilité
- Examens en ligne
- Projet(s) individuel(s)
- Projet(s) collectif(s)
2024-2025 2nd semestre : Formation en présentiel soir ou samedi
Dates importantes
- Période des séances du 03/02/2025 au 07/06/2025
- Période d'inscription : du 10/06/2024 à 10:00 au 14/03/2025 à 17:00
- Date de 1ère session d'examen : la date sera publiée sur le site du centre ou l'ENF
- Date de 2ème session d'examen : la date sera publiée sur le site du centre ou l'ENF
Précision sur la modalité pédagogique
- Une formation en présentiel est dispensée dans un lieu identifié (salle, amphi ...) selon un planning défini (date et horaire).
-
Paris
-
Paris
Code UE : RCP209
- Cours
- 6 crédits
- Volume horaire de référence
(+ ou - 10%) : 50 heures