Generative Artificial Intelligence for Advanced Automation
Code UE : USEEW2
- Cours
- 3 crédits
Responsable(s)
Stefano SECCI
Public, conditions d’accès et prérequis
Applied AI Skills from the first year of master, in particular:
- Basics in AI, ML and distributed learning.
- Basics in ML programming
Objectifs pédagogiques
The objectives of the module is to understand in detail Generative Artificial Intelligence technologies and how they can be served using networking technologies.
Compétences visées
Applied AI Skills
Contenu
- Introduction to Generative AI fundamentals
- Generative AI Use-Cases and Applications
- GenAI Modeling and Scheduling
- Traffic Modeling and Network Accelleration protocols
Lectures These sessions are dedicated to acquiring the theoretical concepts and fundamentals of Generative AI.
- Introduction to Generative AI and foundational models (GANs, VAEs)
- What is Generative AI? (vs. Discriminative AI)
- Early statistical models (e.g., Markov Chains, HMMs)
- Generative Adversarial Networks (GANs): architecture, training, strengths, and weaknesses
- Variational Autoencoders (VAEs): architecture, training, and applications
- Transformer architectures and Large Language Models (LLMs)
- The Transformer architecture: self-attention, QKV vectors, and multi-head attention
- The Encoder-Decoder framework and its variants
- Large Language Models (LLMs): pre-training and fine-tuning paradigms
- Prompt engineering: principles and techniques
- Diffusion models and creative applications
- The forward and reverse diffusion processes
- Latent Diffusion Models (LDMs): concepts and efficiency
- Applications in image and video generation (e.g., text-to-image)
- Tools and frameworks for implementing diffusion models
- Ethical issues, challenges, and future trends
- Ethical implications: bias, misinformation (deepfakes), and intellectual property
- Current challenges: hallucinations, controllability, and computational cost
- Responsible AI principles
- Future trends: multimodal generation, efficiency, and scientific discovery
- GenAI traffic modeling and network accelleration
- Collective Communications
- Data-driven versus Traffic Model
- Transport protocols (RDMA, ROCE)
- Project assignment and beginning of practical work (1 lesson)
- Group project follow-up (2 lessons)
- Use-case seminars (1-3 lessons)
Modalité d'évaluation
Lab/project reports, final exam.
Cette UE apparaît dans les diplômes et certificats suivants
Rechercher une formation
RECHERCHE MULTI-CRITERES
Plus de critères de recherche sont proposés:
-
Vous pouvez sélectionner des formations grâce à un mot ou à une expression (chaîne de caractères) présent dans l’intitulé de la formation, sa description ou ses index (discipline ou métier).
Des mots-clés sont suggérés à partir du 3e caractère saisi, mais vous pouvez aussi rechercher librement. - Les différents items sélectionnés sont croisés.
ex: "Comptabilité" et "Diplôme" - Les résultats comprennent des formations du Cnam Liban (UE, diplômes, certificats, stages) et des formations proposées à distance par d'autres centres du Cnam.
- Les codes des formations du Liban se terminent par le suffixe LIB.
- Dans tous les cas, veillez à ne pas insérer d'espace ni de ponctuation supplémentaire.
Plus de critères de recherche sont proposés:
- Type de diplôme
- Niveau d'entrée
- Modalité de l'enseignement
- Programmation semestrielle
Chargement du résultat...

Intitulé de la formation |
Type |
Modalité(s) |
Lieu(x) |
|
---|---|---|---|---|
Intitulé de la formation
Artificial Intelligence for Connected Industries
|
Lieu(x)
Package
|
Lieu(x)
Paris
|
||
Intitulé de la formation | Type | Modalité(s) | Lieu(x) |
Contact
Voir le calendrier, le tarif, les conditions d'accessibilité et les modalités d'inscription dans le(s) centre(s) d'enseignement qui propose(nt) cette formation.
Enseignement non encore programmé
Code UE : USEEW2
- Cours
- 3 crédits
Responsable(s)
Stefano SECCI