Fouille de données 2
Code UE : USID0D
- Cours
- 4 crédits
Responsable(s)
Ghislaine CHARTRON
Béatrice ARRUABARRENA
Objectifs pédagogiques
Dans la poursuite des cours de fouille de données de M1, cet enseignement vise l’approfondissement du traitement de « données ». Les techniques de machine learning supervisées et non supervisées sont abordés.
Compétences visées
Cet enseignement vise les compétences techniques de collecte (fichier de logs machine, web scraping, etc.), de pré-traitement et d’analyse par les principales méthodes de Machine Learning :
1. Exploiter les données dans une démarche analytique et business intelligence (BI) :
Analyses statistiques (statistiques descriptives, inférentielles) afin d’affirmer ou infirmer des hypothèses et/ou stratégies en lien avec les besoins des métiers composant une organisations (SAS, Excel, logiciel R, etc.)
2. Exploiter les données dans une démarche exploratoire (logiciel R, Python):
-analyser à l’aide des techniques de Datamining (fouille de données, analyse spatiale et temporelle, analyse réseau, cartographie) afin de faire émerger de nouvelles connaissances ou de nouveaux usages ;
- sélectionner et l’utiliser ou éventuellement implémenter des algorithmes de traitements des données à l’aide des méthodes d’apprentissage automatique (machine Learning, Deep Learning, réseaux de neurones)
1. Exploiter les données dans une démarche analytique et business intelligence (BI) :
Analyses statistiques (statistiques descriptives, inférentielles) afin d’affirmer ou infirmer des hypothèses et/ou stratégies en lien avec les besoins des métiers composant une organisations (SAS, Excel, logiciel R, etc.)
2. Exploiter les données dans une démarche exploratoire (logiciel R, Python):
-analyser à l’aide des techniques de Datamining (fouille de données, analyse spatiale et temporelle, analyse réseau, cartographie) afin de faire émerger de nouvelles connaissances ou de nouveaux usages ;
- sélectionner et l’utiliser ou éventuellement implémenter des algorithmes de traitements des données à l’aide des méthodes d’apprentissage automatique (machine Learning, Deep Learning, réseaux de neurones)
Contenu
Modalité d'évaluation
Projet à réaliser. Contrôle individuel.
Cette UE apparaît dans les diplômes et certificats suivants
Rechercher une formation
RECHERCHE MULTI-CRITERES
Plus de critères de recherche sont proposés:
-
Vous pouvez sélectionner des formations grâce à un mot ou à une expression (chaîne de caractères) présent dans l’intitulé de la formation, sa description ou ses index (discipline ou métier).
Des mots-clés sont suggérés à partir du 3e caractère saisi, mais vous pouvez aussi rechercher librement. - Les différents items sélectionnés sont croisés.
ex: "Comptabilité" et "Diplôme" - Les résultats comprennent des formations du Cnam Liban (UE, diplômes, certificats, stages) et des formations proposées à distance par d'autres centres du Cnam.
- Les codes des formations du Liban se terminent par le suffixe LIB.
- Dans tous les cas, veillez à ne pas insérer d'espace ni de ponctuation supplémentaire.
Plus de critères de recherche sont proposés:
- Type de diplôme
- Niveau d'entrée
- Modalité de l'enseignement
- Programmation semestrielle
Chargement du résultat...
Intitulé de la formation |
Type |
Modalité(s) |
Lieu(x) |
|
---|---|---|---|---|
Intitulé de la formation
Master Méga Données et Analyse Sociale (MéDAS)
|
Lieu(x)
Alternance
|
Lieu(x)
La Plaine Saint-Denis, Paris
|
||
Intitulé de la formation | Type | Modalité(s) | Lieu(x) |
Contact
Voir le calendrier, le tarif, les conditions d'accessibilité et les modalités d'inscription dans le(s) centre(s) d'enseignement qui propose(nt) cette formation.
Enseignement non encore programmé
Code UE : USID0D
- Cours
- 4 crédits
Responsable(s)
Ghislaine CHARTRON
Béatrice ARRUABARRENA