Algèbre linéaire et géométrie

Code UE : MVA107-LIB

  • Cours + travaux pratiques
  • 6 crédits
  • Volume horaire de référence
    (+ ou - 10%) : 50 heures

Responsable(s)

Isabelle GIL

Public, conditions d’accès et prérequis

Avoir été reçu aux UE MVA005 et MVA006 ou pouvoir justifier la réussite à des examens portant sur des programmes de niveau comparable.

L'avis des auditeurs

Les dernières réponses à l'enquête d'appréciation pour cet enseignement :

Présence et réussite aux examens

Pour l'année universitaire 2020-2021 :

  • Nombre d'inscrits : 54
  • Taux de présence à l'évaluation : 37%
  • Taux de réussite à l'évaluation : 65%

Objectifs pédagogiques

Partie Algèbre : Apprendre l'algèbre linéaire, le calcul matriciel et les formes quadratiques.
Partie Géométrie : Apprendre les notions de base de l'Analyse vectorielle, les intégrales curvilignes, de surface, triples et les liens qui les unissent.

Algèbre linéaire
Espaces vectoriels, ensemble générateur, ensemble libre, base d'un espace vectoriel de dimension finie.
Application linéaire, noyau, image.
Opérations sur les applications linéaires : somme, composition, application réciproque.
Matrices
Représentation matricielle des applications linéaires.
Calcul matriciel.
Déterminant, utilisation pour le calcul de l'inverse d'une matrice.
Matrice de changement de base, application.
Réduction des endomorphismes
Valeurs propres, vecteurs propres, multiplicité des valeurs propres.
Diagonalisation, forme de Jordan.
Application à la résolution des systèmes différentiels linéaires du premier ordre à coefficients constants.
Algèbre bilinéaire
Espaces euclidiens, applications orthogonales, bases orthonormées, projections orthogonales.
Réduction des opérateurs symétriques.
Rappels sur les intégrales multiples
Définition et calcul des intégrales multiples, changement de variables, matrice jacobienne, coordonnées cartésiennes, cylindriques et sphériques.
Dimension 1
Courbes paramétrées, intégrales curvilignes.
Champ de vecteurs, circulation le long d'une courbe paramétrée.
Champ de gradient, potentiel scalaire, première caractérisation d'un champ de gradient.
Dimension 2
Surface paramétrée, intégrales de surface, aire d'une surface.
Flux d'un champ de vecteurs à travers une surface paramétrée.
Champ de rotationnel, potentiel vecteur, première caractérisation d'un champ de rotationnel.
Formule de Stokes, deuxième caractérisation d'un champ de gradient.
Dimension 3
Divergence d'un champ de vecteurs.
Formule d'Ostrogradski, application au calcul des volumes, deuxième caractérisation d'un champ de rotationnels.
Étude de cas - Approfondissement du cours
Applications

  • GRIFONE : Algèbre linéaire (Editions CEPADUES).

Cette UE apparaît dans les diplômes et certificats suivants

Contact

EPN06 Mathématiques et statistiques
2 rue conté Accès 35 3 ème étage porte 19
75003 Paris
Sabine Glodkowski
Voir le site

Centre(s) d'enseignement proposant cette formation

  • Liban
    • 2022-2023 1er semestre : Présentiel soir ou samedi
    • 2022-2023 2nd semestre : Présentiel soir ou samedi